Данные спутниковых наблюдений весьма важны при оценке распространения лесных пожаров, выявления их очагов, анализе развития дымов от пожаров, гарей, выявлении опасности возникновения пожаров.
Возможность ликвидации пожара на малой площади, особенно в условиях высокой пожарной опасности, определяется оперативностью обнаружения. Таким образом, наиболее подходящими требованиям оперативного мониторинга лесных и торфяных пожаров соответствуют спутники с высоким радиометрическим разрешением и высокой периодичностью съемки (серии NOAA и EOS). Для мониторинга последствий пожаров необходимо использовать спутники с высоким пространственным разрешением.
Задачи мониторинга пожаров и их последствий:
детектирование пожаров, определение мест загорания;
мониторинг и контроль развития пожаров;
оценка пожарной опасности в пределах сезона;
прогнозирование рисков возникновения пожаров в долгосрочной перспективе;
оценка последствий пожаров. Совмещение снимков до и после пожаров дает возможность выявить гари, определить их площади на текущее время и оценить нанесенный ущерб.
Последствия воздействия лесных пожаров на окружающую среду и человека:
Экономические: потери древесины, в т.ч. повреждение молодняков, ресурсов побочного лесопользования; Расходы на тушение, расчистку горельников и др.; восстановительные работы; убытки других отраслей: прекращение авиа-, ж/д-, автоперевозок, судоходства и др.
Социальные: гибель и травматизм людей, непосредственно в зоне пожара; ухудшение психофизиологических показателей населения: физических, эмоциональных, интеллектуальных, репродуктивных, наследственности; рост заболеваемости населения; уменьшение продолжительности жизни.
Для детектирования пожаров используются тепловые каналы космических снимков (Рис.1, Табл. 1, 2.). Таблица 1. Диапазоны длин волн.
Рисунок 1. Электромагнитный спектр атмосферы и длины волн в атмосфере.
Диапазон
Сокращения
Русский
Английский
Русский
Английский
Ультрафиолетовый
Ultraviolet
УФ
Видимый
Visible
В
UV
Инфракрасный
Infrared
ИК
VIS
Ближний ИК
Near Infrared
БИК
NIR
Средний ИК
Short Wave Infrared
СИК
SWIR
Дальний ИК
Mid Wave Infrared
ДИК
MWIR
Тепловой ИК
Thermal Infrared
ТИК
TIR
Микроволновой
Microwave
МВ
MW
Космические аппараты, которые позволяют детектировать очаги пожара, представлены втаблице 1.
Методы детектирования пожаров базируются на анализе температур яркости в отдельных спектральных каналах.
Ключевым признаком поискового явления есть локальное повышение температуры в месте возгорания.
Обнаружение очагов пожаров визуальным способом позволяет быстрее и точнее определить пороги обнаружения тепловых аномалий. В общем случае данные пороги будут разными. Это связано прежде всего с площадью и температурой горения, временем года и суток, и с географическими координатами места пожара.
Присутствие очага горения в видимом спектре определяется по наличию основного дешифровочного признака лесных пожаров - дымовому шлейфу.
По форме на снимке очаг напоминает конус светло-серого цвета. Следует помнить, что перистая и слоистая облачность по своей структуре и яркости могут напоминать дымовые шлейфы лесных пожаров. Поэтому те части снимков видимого спектра, где предварительно обнаружен лесной пожар, просматриваются в инфракрасном диапазоне спектра. В этом случае шлейфы дыма от лесных пожаров практически не просматриваются. В основе всех методов лежат следующие принципы:
Анализа распределения сигнала в пределах определенных спектральных каналов аппаратуры наблюдения;
Пороговое правило отнесения участка изображения (или пиксела) к соответствующему классу;
Статистический анализ распределения спектральных характеристик отдельных участков изображения (или пикселов);
Анализ достоверности отнесения зарегистрированного сигнала к соответствующему классу.
Последовательность процедур обработки космических изображений:
Определение информативных каналов.
Обособление туч, водных объектов и утраченных данных на снимках в определенных каналах.
Определение мест потенциальных пожаров.
Определение локальных спектральных особенностей поверхности и регистрация пожаров за косвенными признаками.
Уточнение детектирования с учетом локальных особенностей, применение комплексных правил определения пожаров.
Анализ возможности ошибочного распознавания.
Заверка результатов детектирования и принятие решения.
Алгоритм автоматического определения очагов пожаров реализован в программном обеспечении, поставляемом ИТЦ «СканЭкс»:
ScanViewer (для спутников серии NOAA). Cпециалистами ИТЦ СканЭкс в приложении ScanViewer реализован аппарат, позволяющий проводить автоматическое детектирование очагов лесных пожаров по данным радиометра AVHRR, входящего в состав бортового измерительного комплекса ИСЗ серии NOAA. Сочетание алгоритмов автоматического обнаружения с визуальным просмотром изображения и наложением картографической информации составляет основу интерактивной технологии обнаружения и мониторинга лесных пожаров. Недостаток этих методов, заключается в том, что точно определить можно лишь крупные пожары.
ScanEx MODIS Processor (для спутников серии EOS). Для выявления и оперативного обнаружения пожаров в приложении ScanEx MODIS Processor используются алгоритмы, разработанные для прибора MODIS и позволяющие определить местоположение пожаров и их интенсивность.
Методика обнаружения пожаров основана на сравнении температур (интенсивностей входного сигнала, полученного радиометром MODIS) каждого пикселя в двух инфракрасных спектральных каналах, 21 канал (4 мкм T4) и 31 канал (11 мкм T11). Эта методика реализована в рамках программы Scanex Modis Processor с возможностью диалоговой настройки входных и выходных параметров.
При этом считается, что чем выше температура пикселя в 21 канале, тем больше вероятность пожара. Аналогично, чем больше разность температур в каналах 4 мкм. и 11 мкм. (dT411), тем больше вероятность пожара. Потенциальный очаг пожара выявляется двумя способами:
Абсолютные значения каждой из вышеназванных величин в пикселе (T4 и dT411) превышают допустимые пределы, заданные в параметрах маски пожаров (например, T4 выше 360К днем или dT411 больше 25 K днем).
Значение интенсивности сигнала в канале 4 мкм некоторого пикселя сильно отличается от окружения (например, T4 > T4b + pT4.s.d.c.*dT4b - температура текущего исследуемого пикселя в канале 4 мкм больше средней температуры окружающих пикселей + стандартное отклонение температуры окружающих его пикселей умноженное на эмпирический коэффициент (standard deviation coefficient, обычно pT4.s.d.c = 3)).
В программе имеется набор параметров, которые отвечают за то, будет тот или иной пиксель регистрироваться как очаг пожара или нет. Сочетание этих параметров (маски пожаров) существенно зависят от региона. Например, лесостепная территория Курганской области и Ивдельская тайга имеют различные спектральные характеристики отражения в тепловом диапазоне, принимаемом радиометром MODIS. Кроме того, комбинация этих параметров зависит от сезона (зима, весна, лето, осень) и даже от времени приема.
Программный модуль "Fire detection" к пакету прикладных программ ERDAS Imagine с критериями (Табл. 3.).
Радиометр MODIS (Moderate Resolution Imaging Spectroradiometer) (Табл. 4.) является одним из ключевых съемочных приборов, установленных на борту американских спутников TERRA (на орбите с 1999 г.) и AQUA (на орбите с 2002 г), осуществляющих исследования Земли из космоса по программе EOS (Earth Observing System) национального аэрокосмического агентства (NASA) США.
Таблица 4. Основные технические характеристики MODIS.
Номера каналов
Спектральный
диапазон (мкм.)
Ширина полосы обзора (км.)
Период съемки
Радиоме-трическое разрешение (бит)
Простра-нственное разрешение (м.)
1
Видимый (красный)
0.620 – 0.670
2300
1-2 дня
12
250
2
NIR (ближний инфракрасный)
0.841 – 0.876
3
Видимый (синий)
0.459 – 0.479
500
4
Видимый (зеленый)
0.545 – 0.565
5
NIR (ближний инфракрасный)
1.230 – 1.250
6
MIR (средний инфракрасный)
1.628 – 1.652
7
2.105 – 2.155
8
0.405 – 0.420
1000
9
Видимый (синий)
0.438 – 0.448
10
0.483 – 0.493
11
Видимый (зеленый)
0.526 – 0.536
12
0.546 – 0.556
13 h
Видимый (красный)
0.662 – 0.672
13 i
14 h
0.673 – 0.683
14 i
15
NIR (ближний инфракрасный)
0.743 – 0.753
16
0.862 – 0.877
17
0.890 – 0.920
18
0.931 – 0.941
19
0.915 – 0.965
20
3.660 – 3.840
21
TIR (тепловой инфракрасный)
3.929 – 3.989
22
3.929 – 3.989
23
4.020 – 4.080
24
4.433 – 4.498
25
4.482 – 4.549
26
1.360 – 1.390
27
6.535 – 6.895
28
7.175 – 7.475
29
8.400 – 8.700
30
9.580 – 9.880
31
10.780–11.280
32
11.770–12.270
33
13.185–13.485
34
13.485–13.785
35
13.785–14.085
36
14.085–14.385
Радиометр MODIS позволяет осуществлять ежедневный оперативный мониторинг территорий, при этом периодичность наблюдения зависит от ее размеров и географического положения, а также количества используемых спутников.
Периодичность наблюдения отдельной территории при съемке одним спутником составляет от 1-2 раз в дневное время и столько же раз ночью. При съемке двумя спутниками частота наблюдений удвоится - от 4 до 12 раз в сутки (в зависимости от географического положения территории).
Для практического использования данных MODIS разработаны и регулярно совершенствуются алгоритмы обработки первичных данных радиометра, существует 44 стандартных информационных продукта (модули - MOD).
Для выявления тепловых аномалий и пожаров используется модуль (MOD14). Он позволяет обеспечить оперативное обнаружение и мониторинг природных (лесных) пожаров, вулканов и других тепловых аномалий с разрешением 1 км. MODIS может зафиксировать пожар на площади менее 1км2.
Алгоритмы детектирования пожаров в автоматическом режиме основаны на значительной разнице температур земной поверхности (обычно не выше 10–25 C) и очага пожара (300–900 C). Почти 100-кратное различие в тепловом излучении объектов фиксируется на снимке, а информация, поступающая с других спектральных каналов, помогает отделить облака.
Съемка тепловой аппаратурой спектрорадиометра MODIS с пространственным разрешением 1 км дает возможность выявить очаг пожара площадью от 1 га или подземный пожар площадью от 9 га.
На спутниках серии NOAA установлены два комплекса приборов: AVHRR (Advanced Very High Resolution Radiometer) (Табл. 5.) и комплект аппаратуры для вертикального зондирования атмосферы.
Космическая съемка аппаратами NOAA разрешает отслеживать пожары в основном в региональном масштабе через невысокую пространственную разрешающую способность снимков (1,1 км).
Таблица 5.Основные технические характеристики AVHRR.
Номера каналов
Спектральный диапазон (мкм)
Ширина полосы обзора (км.)
Период съемки
Радиоме-трическое разрешение (бит)
Простран-ственное разрешение (м.)
1
Видимый (зеленый)
0.58–0.68
3000
101 мин
10
1100
2
NIR (ближний инфракрасный)
0.725–1.10
3A
NIR (ближний инфракрасный)
1.58—1.64
3B
NIR (ближний инфракрасный)
3.55–3.93
4
TIR (тепловой инфракрасный)
10.3–11.3
5
TIR (тепловой инфракрасный)
11.5–12.5
Для выделения очагов пожаров с помощью "порогового" или "контекстуального" алгоритма на предварительном этапе вся получаемая со спутников NOAA информация должна быть откалибрована. Это значит, что для первого и второго каналов аппаратуры AVHRR необходимо получить значения альбедо А1, А2 соответственно. А для третьего, четвертого и пятого каналов - значения эквивалентной радиационной температуры Т3, Т4 и Т5 соответственно. Методы определения пожаров базируется на использовании оценки излучения за 3В, 4, 5 каналами AVHRR, которые отвечают инфракрасному диапазону спектра. пожары определяются как экстремальные значения излучения по 3В каналу (на эту область припадает максимум излучения объектов при температуре горения 800-1000К)AVHRR.
Шлейфы дыма, вызванные пожарами, хорошо определяются на 1 и 2 каналах AVHRR.
Для более точной идентификации пожаров используются пороговые алгоритмы, за которыми определяется температура излучения по 3-му и 4-му каналах. Прибор AVHRR откалибровано за температурой до 330 К.
Известно, что максимум потока излучения черного тела, нагретого до температуры 800-1000 К, приходится на среднюю инфракрасную область электромагнитного спектра с длиной волны 3-4 мкм. Исходя из характеристик аппаратуры AVHRR в качестве основного признака для распознавания тепловой аномалии принимаются данные третьего канала, работающего в диапазоне 3,55-3,93 мкм.
Так как пространственное разрешение аппаратуры AVHRR составляет 1,1 км, то в идеальном случае можно обнаруживать объекты, линейные размеры которых превышают 1,1 км. А благодаря высокой интенсивности излучения в среднем ИК-диапазоне и высокому радиометрическому разрешению аппаратуры становится возможным обнаружение тепловых аномалий природного и техногенного характера много меньших размеров. В идеальных условиях наблюдения при максимальном контрасте м. 3-м и 4-м каналами аппаратуры AVHRR есть принцип. возможность обнаружения пожаров с площадью 0,2-0,3 га.
Использование в пороговом алгоритме только одного третьего канала (один порог) приводит к возникновению большого количества ложных тревог. Это связано прежде всего с отражением энергии солнечного излучения кромками облаков (наибольшее число ложных тревог), водной поверхностью, песком, открытыми горными породами, асфальтовыми покрытиями и бетонными сооружениями. Чтобы не допустить ошибок, необходимо использовать данные других спектральных каналов. Пороговые алгоритмы выделения очагов пожаров:
Алгоритм Кауфмана (1991 год): T3 > 316 К, T3-T4 > 10 К и T4 > 250 К. Здесь Т3, Т4, Т5 - радио-яркостная температура в 3-, 4- и 5-м каналах аппаратуры AVHRR соответственно.
Алгоритм Франса (1993 год): T3 > 320 К, T3-T4 > 15 К, 0 < (T4-T5) < 5 К, A1 < 9%, где А1 - значение альбедо в 1 -м канале.
Алгоритм Кэннеди (1994 год): T3 > 320 К, T3-T4> 15 К, A2< 16%, где А2- значение альбедо во 2-м канале.
Если элемент разрешения удовлетворяет условиям алгоритма, то он относится к классу пожаров; если же не удовлетворяет хотя бы одному из этих условий, то - к фону.
Все эти алгоритмы ориентированы на очаги пожаров достаточно большой площади и интенсивности, что для решения задач выявления пожарной обстановки является неприемлемым, так как важно обнаруживать пожары в начальной степени их развития с целью минимизации материальных затрат на ликвидацию очага возгорания. Кроме того, данные алгоритмы крайне не желательно использовать для обнаружения наличия перегретого торфа в торфяниках.
На сегодняшний день в центре приема и анализа авиационно-космической информации МЧС России за основу принят алгоритм Кауфмана (1) с "плавающими" порогами. Как указывалось ранее, на этапе предварительной обработки информации с аппаратуры AVHRR определяются явные очаги природных пожаров по наличию дымовых шлейфов.
После калибровки изображений определяются характеристики выявленных очагов и прилегающего к ним фона, на основе которых и выбираются соответствующие пороги. После анализа аналогичных характеристик подстилающей поверхности в пределах снимка совместно с характеристиками очагов пожаров определяются "плавающие" пороги.
Однако не следует полностью доверять результатам выделения очагов пожаров с использованием данных порогов, так как возможны случаи отражения электромагнитной энергии от кромок облаков, и возможно появление ложных тревог, вызванных перегретым песком и различными техногенными образованиями. Поэтому сомнительные точки, находящиеся слишком близко к облакам, вблизи рек, морей и т.д., необходимо подвергнуть дополнительной проверке.
Дополнительная проверка заключается в анализе отражательной способности интересующих нас пикселей в первом и втором каналах аппаратуры AVHRR. Если значение альбедо в первом канале больше, чем значение альбедо во втором канале (A1 > A2), то данную точку в подавляющем большинстве случаев можно однозначно отнести к ложной тревоге. но возможны случаи, когда возникают сомнения в правильности такого решения (например, отсутствие облачности или песка). В этом случае мы классифицируем данную точку как возможный очаг пожара, если нет какой-либо дополнительной информации о рассматриваемом районе. Если же значения альбедо в первом и втором каналах превышают 10-16% (в зависимости от условий наблюдения), то данная точка также классифицируется как ложная тревога. Во всех остальных случаях принимается гипотеза о наличии тепловой аномалии в рассматриваемых точках.
Если число ложных тревог достаточно велико, то можно несколько завысить порог по третьему и/или по четвертому каналу. Таким способом, не удается полностью избавиться от ложных тревог и все равно приходится проверять большинство предполагаемых очагов. Кроме того, мы намеренно исключаем из рассмотрения пожары малой площади, что также является недопустимым.
Облачность является непрозрачной средой для ИК-излучения, поэтому для пикселей, где ее размер занимает более 60-70% изображения, она выделяется автоматически. Поскольку облачность холоднее земной поверхности, возможно установление порога яркостной температуры в 4- или 5-м канале радиометра с маскировкой пикселей изображения, не превышающих указанное пороговое значение.
В качестве базового алгоритма выделения облачности для данных AVHRR предлагается взять стандарт SHARP-2 Европейского космического агентства. В данном стандарте предусматривается классификация, разделяющая пиксели изображения на следующие классы: земная поверхность (ЗП), вода, облачность.
Выделение облачности на исходном изображении происходит по условиям из стандарта SHARP-2 ЕКА:
"Облачность", если A(2)/A(1) > 0.9 & A(2)/A(1) < 1,1&T4 < 294 К
"Облачность", если Т4 < 249 К
"Облачность", если Т4-T2 > 274 К & T4 < 290 К
Авторами сделано предположение, что данные условия плохо приспособлены для определения границы облачность/ЗП и для выделения "разорванной облачности" на территории Европейской части России, поэтому ими предложено ввести дополнительное условие. Таким условием выступает анализ яркостных характеристик 4-спектрального диапазона.
При анализе используется дополнительное условие (4), в котором анализируется СКО (4) эквивалентной радиационной температуры в 4-спектральном диапазоне прибора AVHRR, вычисленное по окну 15х15 пикселов:
σ4≤σпор,
где σпор - пороговая эквивалентная радиационная температура в 4-спектральном диапазоне прибора AVHRR по окну 15х15 пикселей, значение которой определяется в результате исследования.
По результатам обработки тестовых изображений для Европейской части России (48-67 северной широты) σпор = 1,3.
Так как в спектральных диапазонах 4- и 5-ого каналов приборов AVHRR/2 (3) влияние Солнца на характеристики изображения минимально, то отсеивание облачности можно проводить, анализируя СКО яркостной характеристики. При этом в модифицированном контекстуальном алгоритме учитывается не только значение СКО яркостных характеристик пикселя, но и условия стандарта SHARP-2 для данных AVHRR.
Для тестирования и учета в модифицированном контекстуальном алгоритме выбираются условия классификации из стандарта SHARP-2, которые были взяты в качестве базовых условий. Для тестирования была написана модель выделения водной поверхности. Для анализируемого изображения Х(x1 ,..., x5) проводится классификация пикселей по признакам: "вода", "облачность", "земная поверхность". В результате классификации с учетом условий, на водную поверхность и различную облачность из исходного изображения создается два промежуточных слоя. Первый, состоящий из 0 и 1, где 0 соответствует пикселю, который был классифицирован как шум и 1 соответствует пикселю, который был классифицирован как земная поверхность. Второй, состоящий из 0 и T3, где 0 соответствует пикселю, который был классифицирован как шум, а T3 соответствует радиационной температуре в 3-м канале AVHRR для пикселя, который был классифицирован как земная поверхность.
Все пиксели, классифицированные как "вода" и "облачность", в дальнейшем анализе "наличия сигнала" не рассматриваются.
Последовательно для каждого пикселя выделяется центральная локальная область размерами 15х15 пикселей. Для этой области рассматриваются 5-канальные характеристики пикселей. Также рассчитывается количество пикселей, отличных от классов "вода" и "облачность", и для них рассчитывается среднее значение T3ср.
Признаком выделения сигнала выступает условие: T3ср > T3ср.пор.. При выполнении этого условия принимается решение о "наличии пикселя с пожаром".
Применение модифицированного контекстуального алгоритма позволяет уменьшить вероятность "ложной тревоги" на 10-15% для территории Северной и Центральной части России. Естественным плюсом данного алгоритма является относительная работа и независимость от угла Солнца и времени суток. Самый крупный недостаток - неработоспособность контекстуального алгоритма в случае наличия облачности в текстурных районах изображения.
ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) (Табл. 9) - усовершенствованный космический радиометр теплового излучения и отражения) - это одна из пяти съемочных систем на борту спутника Terra, сочетающая широкий спектральный охват и высокое пространственное разрешение в видимом, ближнем инфракрасном (БИК), среднем инфракрасном (СрИК) и тепловом инфракрасном диапазоне.
Таблица 9. Основные технические характеристики ASTER.
Номера каналов
Спектральный диапазон (мкм)
Ширина полосы обзора (км.)
Период съемки
Радиоме-трическое разрешение (бит)
Простран-ственное разрешение (м.)
1
VNIR (видимый и ближний инфракрасный)
0.52 - 0.60
60
16 суток
8
15
2
0.63 - 0.69
3n
0.76 - 0.86
3b (cтерео)
0.76 - 0.86
4
SWIR (средний инфракрасный)
1.600 - 1.700
8
30
5
2.145 - 2.185
6
2.185 - 2.225
7
2.235 - 2.285
8
2.295 - 2.365
9
2.360 - 2.430
10
TIR (тепловой инфракрасный)
8.125 - 8.475
12
90
11
8.475 - 8.825
12
8.925 - 9.275
13
10.25 - 10.95
14
10.95 - 11.65
Абсолютная радиометрическая точность по спектральным зонам составляет 4% для видимого и ближнего инфракрасного диапазона, и 1-3 К для теплового диапазона, в зависимости от температуры. Зоны теплового диапазона предназначены для регистрации температуры земной поверхности.
Level-2 products:AST09T Surface radiance-TIR – температура поверхности Земли.
Дубровский В., Пархисенко Я.В. Космический мониторинг лесных пожаров по снимкам NOAA в УЦМЗР.
Выявление лесных и степных пожаров, методика решения тематической задачи.
Технология мониторинга лесных (торфяных) пожаров по данным космической съемки.
Аппаратно-программные комплексы приема и обработки данных ДДЗ.
Конвергенция новейших информационных технологий и методов дистанционного зондирования земли для построения аэрокосмического экологического мониторинга мегаполисов.
Мониторинг лесных и торфяных пожаров. ИТЦ СканЭкс.
Пошлякова Л.П. Методика создания ГИС-проекта на основе данных дистанционного зондирования Земли с целью оценки пожароопасности территории.